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Deep Q Learning is in the ” regime...

Neural Fitted Q Iteration
Initialize () and target net Q

while do
for k£ steps do >
Q(s,a) < R(s,a) +vQ(s',a")
Q+Q
return ()

..where model bias and optimization interact in
ways.



Understanding deep reinforcement learning

requires understanding supervised learning under
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NTK and the “early stopping” regime

Recent works in deep learning theory [Jacot era, Arora eral] Offer significant
insight into how the neural network evolves under gradient descent

f— 1% = eKED(fy — ) where  K(&,E) = (Vo fiO) Vo /()

In particular, the convergence at a spectral frequency f; is proportional
to the Eigen value A of the NTK , which decays rapidly for an MLP.

f—f* = eAi(fO — *) where K(f, é) — ZAifi
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NTK and the “early stopping” regime

The vanilla MLP generalize in an uncontrolled fashion, which manifest
as aliasing between gradient vectors over long-horizon.

K(s,s’) = ( V@f(S)TVef(S'»
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(a) MLP + ReL.U
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The “Spectral Bias” and NTK

State aliasing is unavoidable with function approximators, but the cross-
talk can cause divergence, as shown in Baird et al.
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Baird et al 1995 (a) MLP + ReL.U

Achiam et al, Towards Characterizing Divergence in Deep Q Learning
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To overcome the spectral bias of neural value approximation,
we need to produce controlled generalization that is in nature.

How do we do that?

14



Controlled Generalization via Random Fourier Features

Luckily, the random Fourier features (Rahimi & Recht 2008) offered a way
to construct gaussian kernels using a spectral mixture

k=(&&) ~ 2O 2
where z(&) = Z wl-ez”ki and w, ~ F(H*).

This allows us to construct a composite neural tangent kernel that
interpolates , so that we can specify how the network generalizes.
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Controlled Generalization via Random Fourier Features

import torch import torch

import torch.nn as nn import torch.nn as nn

net = nn. Sequential( net = nn. Sequential(
nn.Linear(1l, 200), nn.Linear(1l, 200),
nn.ReLUQ), x: torch.sin(x),
nn.Linear(200, 200), nn.Linear(200, 200),
nn.ReLUQ), nn.ReLUQ),
nn.Linear(200, 1), nn.Linear(200, 1),
nn.ReLU(Q), nn.ReLU(),

) )
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On the Toy domain,

import torch
1mport torch.nn as nn

net = nn.Sequential(
nn.Linear(1l, 200),
nn.ReLU(),
nn.Linear(200, 200),
nn.ReLU(),
nn.Linear(200, 1),
nn.ReLU(Q),
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On the Toy domain,

1mport torch
1mport torch.nn as nn

net = nn.Sequential(
nn.Linear(1l, 200),

X: torch.sin(x),
nn.Linear(200, 200),
nn.ReLU(Q),
nn.Linear(200, 1),
nn.ReLU(Q),

Overcoming the Spectral Bias of Neural Value Approximation

FOI + MLP

g - — Action |
— Action II

I I
0.0 0.2 04 0.6 0.8 1.0
State [0, 1)

18

FOI + FFEN

— Action |
8 1 —  ActiopwI

I I
0.0 0.2 0.4 0.6 0.8 1.0
State [0, 1)



Controlled generalization via Fourier feature networks

b
W,]:N<O, T

out

1mport torch
1mport torch.nn as nn
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nn.Linear(1l, 200),
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nn.Linear(200, 200), 03- b cp
nn.ReLUQ), —b=10
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Removing The Target Network

1mport torch

import torch.nn as nn Neural Fitted Q Iteration

7_: — Ground Truth

net = nn.Sequential( ] — FFN (No Target)

nn.Linear(l, 200), 67 FEN

x: torch.sin(x), 2 MLP

nn.Linear(200, 200), > 27

nn.ReLUQ), A

nn.Linear(200, 1), :

nn.RelUO), 00 02 o4 0s o8
) State [0, 1)
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Mountain Car

Ground Truth Ours

(e) Tabular (a) 4-layer MLP (b) 12-layer MLP (c) MLP + tanh (d) 4-layer RFN




Scaling Up to Complex Continuous Control Domains

Quadruped [run, walk] from DeepMind control suite [Tassa et al 2018]
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FFN is a better function approximator class

Matches SOTA using just of the compute on Quadruped run
of the compute on Walker run
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Summary

. Single line change overcomes the spectral bias
. Reduces off-policy divergence (no target)
. Matches SOTA using just or of the compute

. Benefit primarily comes from better critic

For more details, please visit: https://gevang.github.io/ffn



https://geyang.github.io/ffn
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