Overcoming The Spectral-Bias of Neural Value Approximation

Ge Yang*, Anurag Ajay* & Pulkit Agrawal

Q learning with neural networks suffers from the "Spectral Bias"

Q learning with neural networks suffers from the "Spectral Bias"

Q learning with neural networks suffers from the "Spectral Bias"

Where it is unable to fit the high-frequency components of an optimal value function

Q Learning with Neural Networks suffer from the "Spectral Bias"

Where it is unable to fit the high-frequency components of an optimal value function

Toy MDP

$$\mathcal{S} \in [0,1)$$

Q Learning with Neural Networks suffer from the "Spectral Bias"

Where it is unable to fit the high-frequency components of an optimal value function

Neural Fitted Q Iteration

Neural Fitted Q Iteration

Deep Q Learning is in the "early stopping" regime...

...where model bias and optimization interact in complex ways.

Understanding deep reinforcement learning requires understanding supervised learning under "early stopping."

NTK and the "early stopping" regime

Recent works in deep learning theory [Jacot et al, Arora et al] offer significant insight into how the neural network evolves under gradient descent

$$f - f^* = e^{K\langle \xi, \hat{\xi} \rangle} (f_0 - f^*) \quad \text{where} \quad K\langle \xi, \hat{\xi} \rangle = \langle \nabla_{\theta} f(\xi)^T \nabla_{\theta} f(\hat{\xi}) \rangle$$

In particular, the convergence at a spectral frequency f_i is proportional to the Eigen value Λ_i of the NTK, which decays rapidly for an MLP.

$$f - f^* = e^{\Lambda_i} (f_0 - f^*)$$
 where $K\langle \xi, \hat{\xi} \rangle = \sum_i \Lambda_i f_i$

NTK and the "early stopping" regime

The vanilla MLP generalize in an uncontrolled fashion, which manifest as aliasing between gradient vectors over long-horizon.

$$K\langle s, s' \rangle = \langle \nabla_{\theta} f(s)^T \nabla_{\theta} f(s') \rangle$$

The "Spectral Bias" and NTK

State aliasing is *unavoidable* with function approximators, but the crosstalk can cause divergence, as shown in Baird *et al*.

Baird et al 1995

(a) MLP + ReLU

To overcome the spectral bias of neural value approximation, we need to produce controlled generalization that is *local* in nature.

How do we do that?

Controlled Generalization via Random Fourier Features

Luckily, the random Fourier features (Rahimi & Recht 2008) offered a way to construct gaussian kernels using a spectral mixture

$$k = \langle \xi, \hat{\xi} \rangle \approx \mathbf{z}(\xi)^T \mathbf{z}(\hat{\xi})$$
where $z(\xi) = \sum_i w_i e^{2\pi k_i}$ and $w_i \sim \mathcal{F}(\mathcal{K}^*)$.

This allows us to construct a composite neural tangent kernel that interpolates *Locally*, so that we can specify how the network generalizes.

Controlled Generalization via Random Fourier Features

```
import torch
                                 import torch
import torch.nn as nn
                                 import torch.nn as nn
net = nn. Sequential(
                                 net = nn. Sequential(
    nn.Linear(1, 200),
                                     nn.Linear(1, 200),
                                     lambda x: torch.sin(x),
    nn.ReLU(),
    nn.Linear(200, 200),
                                     nn.Linear(200, 200),
    nn.ReLU(),
                                     nn.ReLU(),
    nn.Linear(200, 1),
                                     nn.Linear(200, 1),
                                     nn.ReLU(),
    nn.ReLU(),
```

On the Toy domain,

```
import torch
import torch.nn as nn

net = nn.Sequential(
    nn.Linear(1, 200),
    nn.ReLU(),
    nn.Linear(200, 200),
    nn.ReLU(),
    nn.Linear(200, 1),
    nn.ReLU(),
    nn.ReLU(),
    nn.ReLU(),
    )
```

FQI + MLP

On the Toy domain,

```
import torch
import torch.nn as nn

net = nn.Sequential(
    nn.Linear(1, 200),
    lambda x: torch.sin(x),
    nn.Linear(200, 200),
    nn.ReLU(),
    nn.Linear(200, 1),
    nn.ReLU(),
)
```


FQI + FFN

Controlled generalization via Fourier feature networks

Removing The Target Network

```
import torch
import torch.nn as nn

net = nn.Sequential(
    nn.Linear(1, 200),
    lambda x: torch.sin(x),
    nn.Linear(200, 200),
    nn.ReLU(),
    nn.Linear(200, 1),
    nn.ReLU(),
)
```

Neural Fitted Q Iteration

Mountain Car

Scaling Up to Complex Continuous Control Domains

Quadruped [run, walk] from DeepMind control suite [Tassa et al 2018]

Complex Continuous Control Domains (DeepMind control suite)

Quadruped [run, walk]

Quadruped-run

0.6

Frames

0.4

0.8

1e6

Complex Continuous Control Domains (DeepMind control suite)

Quadruped [run, walk]

FFN is a better function approximator class

Matches *SOTA* using just 1/6 of the compute on *Quadruped* run 1/4 of the compute on *Walker* run

Summary

- Single line change overcomes the spectral bias
- Reduces off-policy divergence (no target)
- Matches SOTA using just 1/4 or 1/6 of the compute
- Benefit primarily comes from better critic

For more details, please visit: https://geyang.github.io/ffn

Overcoming The Spectral Bias of Neural Value estimation

For more details, please visit: https://geyang.github.io/ffn

Ge Yang*, Anurag Ajay* & Pulkit Agrawal

*Equal contribution, order determined randomly