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Despite decades of progress, robots remain confined to controlled lab spaces and factory floors,
performing a few specialized tasks. They move conservatively, struggle with handling rich contacts,
and perform poorly when it comes to making long-term decisions in open, uncertain settings.

My research aims to give robots human-like agility and dexterity for physical interactions, along
with the intelligence to solve complex, long-horizon tasks. Central to this mission is finding ways to
scale up learning and data. While many [1, 2, 3] advocate collecting more real-world demonstrations
to achieve generalist robots, I focus instead on developing AI-powered virtual learning environments
that leverage generative models to create data. Through generative AI, we can make synthetic data
significantly more abundant and systematically varied than real-world datasets—bringing us closer
to solving key challenges in both robotics and artificial intelligence.
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My agenda aims
to expand the frontier
along three critical axes.

My past and ongoing research encompass three main thrusts: (1) mastering
real-world visuomotor control via synthetic data, (2) scaling skill-wise to-
wards a general-purpose robot foundation model, and (3) learning to achieve
complex tasks that require foresight. The central theme is leveraging virtual
environments to scale up robot learning. Thrust 1 establishes its feasibil-
ity; Thrust 2 expands the number of applicable skills; Thrust 3 extends the
temporal context length to tackle much more difficult tasks.

Thrust 1: Can A Robot Learn from Machine Dreams?
AI breakthroughs in the past decade were mainly driven by increasing the quantity and quality of
data. Unlike images and text that are abundantly available from online sources, robotic datasets
are magnitudes more scarce. For instance, the LION 2B dataset [4] used to train the text-to-image
generative model, StableDiffusion [5], contained 2.3 billion images. This makes even the largest robot
dataset today [3] 105 times too small based on the generous assumption that 10k hours of robot data
contain 30k distinct scenes. In reality, robotic data is much less diverse.

My work, LucidSim [1], established a promising new direction for closing this data gap. LucidSim is
an AI-powered physics simulator that enables training real-world visual policies without real-world
data. Vision researchers have long dreamed about this, but getting it to work requires solving three
difficult problems. First, image diffusion models were developed to make beautiful pictures, but
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Figure 1: Learning Visual Parkour from Generated Images.
(left) Using generated images from LucidSim, we can produce
(right) robust real-world visual parkour policies.
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Figure 2: CLIP Feature Fields for Manip-
ulation is a higher-order representation of
the gripper ↔ scene relationship.
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our robots need accurate physical dynamics and geometry. Second, the image generation pipeline is
75 ∼ 350× slower than the wall clock. Third, naïvely training on off-policy trajectories performed
poorly, even with significantly larger datasets.

LucidSim provided all three solutions at once. First, I made the data realistic and diverse by building
around the MuJoCo physics engine and using the object mask and depth render from the simulator
to compose and condition the generated images. This ensures visual consistency with the scene
geometry. To mitigate the loss of sample diversity due to such conditioning, I injected variations by
sourcing structured image prompts from ChatGPT. Second, I improved the rendering speed with a
new technique, Dreams In Motion (DIM), which warps a single generated image to consecutive frames
via the optical flow computed from changes in the robot’s camera pose and the scene geometry. DIM
made LucidSim a magnitude faster. Finally, to generate on-policy data, we needed to run image
generation in a closed loop where the visual policy takes in generated images at each time step.
Getting LucidSim “go burrr” was key, so I developed systems tools to distribute trajectory sampling,
image warping, and image generation across 80+GPUs. LucidSim’s results indicated that closed-loop
training was solely responsible for getting the visual policy to reach expert-level performance.

LucidSim is the latest milestone in my quest to expand robotics capabilities. In early 2022, my work
rapid locomotion [2] achieved record running speeds on an MIT Mini Cheetah. In 2023, neural
volumetric memory integrated depth-perception to enable autonomous stairs-climbing [3]; contin-
uing into 2024, my UC San Diego collaboration produced the first learned humanoid whole-body
control [4]. This was followed a few months later by cross-embodied dexterous object manipulation
on multiple humanoid platforms [5]. The common theme is using closed-loop training in simulation
to attain the vital marker of a scalable learning system—a monotonic curve that translates addi-
tional compute into policy improvement (see Fig.12 in the paper [1]). This series of results positions
LucidSim as a promising data source for robotics’ next hundred trillion tokens.

Future Work 1.1. Human-level athleticism and expressivity. Humanoid and dexterous hand hard-
ware are improving rapidly as we speak, which opens up a rich space for expressive, personable, and
athletic robots that were less than accessible in the past. Substantial research is needed, and my
plan is to study competitive sports (think tennis), load-bearing, whole-body manipulation (think of
shouldering a large box or elbowing through a fire door), and finally, moving with personality and
intent. I want robots that are not only capable but can also bring us joy and enrich our lives.

Thrust 2: Towards A Generalist Robot Foundation Model
This thrust aims to expand visuomotor learning skill-wise and build a generalist robot that can
generalize to new skills with little additional training data. Before 2022, I put substantial effort into
understanding how neural networks generalize during a decision process [6, 7, 8]. Most notably, I
made significant progress on a textbook problem in deep RL called the “deadly triad” [6] by explicitly
considering learning as a dynamical process approximating kernel regression [7] as opposed to viewing
neural networks as static, function approximators defined by an “expressivity.”

In late 2022, it became clear to me that the knowledge to generalize was not in clever algorithms
but in the data, and training from scratch on small, bespoke datasets for a task will not be how
we build robots in the future. I began considering ways to represent human demonstrations with
features from vision and vision-language foundation models (VLMs). This view differs from prior
work representing scenes or objects by formulating the problem as learning a higher-order represen-
tation of the relationship between the robot gripper and its surrounding context. In the resulting
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method F3RM ([9], see Fig.2), I “baked” 2D image features from multiple camera perspectives (from
CLIP [7]) into a 3D neural radiance field [8, NeRF], bring example grasps into a shared semantic
space with natural language.

F3RM demonstrated strong open-set generalization to unseen text queries and entirely new cate-
gories of objects while using only five example objects and twelve grasp examples (in total). This
work was selected to be The Best Paper (top 0.2%) out of 499 submissions at the 7th Conference of
Robot Learning (2023). It inspired follow-ups that explore higher-order scene formats [9]; extension
to 3D Gaussian Splatting [10]; and manipulation with a mobile robot [10, 11, 12] [11].

Language prompts and human demonstrations are natural ways to specify a manipulation task, but
being tethered to a physical robot setup limits how quickly we can scale to diverse scenarios and
tasks. So, I began developing mixed reality (XR) tools that have since become a go-to solution
for imitation learning manipulation tasks on humanoids [5]. Below, I will outline my approach to
overcoming key challenges in training a generalist robot foundation model from synthetic data.

Future Work 2.1. Internet-scale foundry for human demonstrations. I plan to collect an internet-
scale synthetic robot dataset by crowd-sourcing via the web. I have two unique advantages: First,
LucidSim enables training real-world robot skills from virtual reality demos that, before LucidSim,
were not as useful. Second, I recently moved the physics engine MuJoCo, which typically runs on
a separate, tethered computer, to run natively on the VR device via the web browser. This was
technically very difficult as it involved compiling to WebAssembly and rewriting the entire graphics
front-end. My plan is to deliver physically realistic, zero-latency immersive experiences through the
browser to crowd-source robot demos. This acts as a great setup for the next agenda item (F2.2.).

F2.2. Generating worlds, scenarios, and other actors. Using generative AI to design environments
and scenarios has the potential to resolve a key scaling bottleneck and is an essential part of my future
agenda. Recent work has explored ways to do so, but few have modeled other agents and actors.
In autonomous driving, for instance, Waymo’s evaluation pipeline models other cars and pedestrians
by playing back recorded trajectories. Learning interactive agent models from passive data is not
trivial [13, 14], but it is essential if we want robots to occupy human spaces. I believe actor models of
increasing levels of sophistication will play a key role in training and enabling closed-loop evaluation.

F2.3. Scaling up closed-loop training to thousands of tasks. It is difficult to manually specify the
reward for thousands of skills. However, on the systems level, this learning pipeline is automated,
which makes it possible to experiment faster at scale than human-in-the-loop setups. This will
accelerate our development of AI reward designers and environment builders. On the learning side,
recent work mapped RL to a reward regression problem (AWR 15, 16), where the policy is learned
entirely by sequence modeling on trajectories and sparse reward [17, 18]. There is a large space for
method and empirical innovations that I am confident will enable us to scale.

Thrust 3: Learning to Achieve Long-Horizon, Complex Tasks
An agent in a Markov decision process needs to connect its current decisions with their future
outcomes. This becomes significantly harder when the goal is only reachable via a long sequence of
actions. During training, a longer horizon makes sampling high-value scenarios less likely; at test
time, it demands extended foresight. Many open problems in robotics and AI fit this description. This
is evident with chatGPT and self-driving cars—once they became generally capable, our expectations
grew to include harder problems that require reasoning and foresight. In the case of chatGPT, this
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means solving math problems or writing complex computer programs; in autonomous driving, it
means knowing when to safely drive onto the opposing lane to get around a construction site.

This thrust builds upon my prior work on “learning to plan” [12, 13, 14], and aims to give robots and
AI the foresight to solve complex, long-horizon tasks. Drawing lessons from successes in computer
Go [19], Poker [20], the board game Diplomacy [21], and more recently, Olympia-level mathemat-
ics [22], my plan pursuits three angles of attack: the policy, the simulator, and closed-loop evaluation.

F3.1. Making flexible and adaptable policies by planning. Policies used in contemporary deep RL
implementations are weak planners with zero look-ahead. This setup can produce highly performant
policies, but they tend to collapse to a subset of behaviors and can be inflexible when additional
constraints appear at test time. This is a prevalent problem that is especially prominent with
humanoids, whose high degrees of freedom induce a space of degenerate solutions, all achieving
similar utility. RL only finds some solutions, causing the robot to struggle in cluttered spaces. The
goal is to produce flexible and expressive policies that adapt robustly to test-time constraints.

F3.2. Learning to achieve long-horizon, complex tasks. Today, vision language models (VLMs)
are not being trained to make decisions. Instead, they are trained to answer single-turn questions
for image comprehension. Unlike supervised learning, in a Markov decision process, sampling data
involves effort, as the agent has to make a sequence of decisions to reach a state. This is why
AlphaGo needed self-play to create its training data. In other words, the data that makes VLMs
truly intelligent does not yet exist. How do we generate such data, and in what kind of simulator?

Many researchers today are excited about using video generation models as world simulators for
robots. I take a contrarian view and argue that task planning operates at a coarser timescale, where
Newton’s Laws are less relevant than the chain of events. I propose “key-frame playground,” an
AI-powered visual text game that extends LucidSim’s synthetic data approach to task planning by
ignoring short-term physics. I want to build an “AI Dungeon Master” that takes player actions via
text at each turn and returns an image. Recent work observed that images interleaved with text
produce stronger VLMs [23]. I believe there will be a general method that teaches both robots and
AI causal relationships that span many intermediate interactions.

F3.3. Trustworthy and accessible closed-loop evaluation at scale. As robots master diverse and
complex skills, they will outgrow existing real-world and simulated evaluation methods. This makes
it difficult to measure progress and compare rigorously between labs. I consider making trustworthy,
closed-loop evaluation a centerpiece of my agenda, and I have been driving a community effort to
build such tools in collaboration with colleagues at USC and UC San Diego. LucidSim championed
closed-loop evaluation using high-fidelity digital twins in robot parkour, but the methodology is
generally applicable to robotics, LLMs, and VLMs, where evaluation is needed for monitoring training
collapse. In comparison, LLM and VLM evaluation benchmarks today are mostly limited to a single
round of interaction, which is far too simple given what we expect these models to accomplish.

Conclusion
I aim to pave the way toward a new generation of intelligent machines that elevate and amplify our
lives. This quest will take most of my research group’s effort in the next few years, as there is plenty
of space for impactful research in both robot learning and artificial intelligence.

I am confident that this agenda will take us there, and I look forward to supporting colleagues to
bring their ideas and algorithmic innovations to life on these powerful platforms.
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